STABILIZATION AND UPGRADING OLD TRANSPORTATION TUNNELS

by Rich Humphries and Mark Sandfort

Golder Associates

Typical Challenges in Upgrading Old Tunnels

- Tunnels are Often In-Service and Must Remain Active
- Maintenance of Old Tunnels is Often Minimal
- ➤ Usually there are No As-Built Drawings or Records of Repairs
- Previous Repairs have Often Caused Present Instability
- ➤ Increased Clearance is Often Required for More Lanes or Larger Trains

Typical Construction of Old Tunnels

- ➤ Drill-and-Blast or Hand Excavation was used for Original Construction
- Support Installed During Excavation was Usually Minimal
- ➤ Lining is Usually Free-Standing Sometimes with Backfill behind it
- Many have Historically Important Portal Structures

Typical Conditions in Old Tunnels

- In Good Rock Tunnels were left Bald
- ➤ Rock has generally remained stable, except for minor falls
- ➤ Shears, Faults and Weathered Zones typically lined with free-standing wood, masonry, brick or unreinforced concrete conditions of these materials vary
- Voids behind lining left open or backfilled with wood or shot rock
- Lining materials often deteriorate in 50 to 100 years
- > Lining is usually not stable in seismic loading

Constraints in Tunnel Upgrading

Repairs must often be done in windows of time so that tunnel can remain active or "live"

- Tunnels must be stable and clear at end of Window
- ➤ Invert usually cannot be lowered to increase clearance
- ➤ Pre-support required before lining can be removed

CASE HISTORIES

- ➤ Little Tunnel Stabilization, Cumberland Gap, Tennessee
- ➤ Rockport and Whitehaven Tunnel Clearance Improvement and Stabilization, Pocono Mountains, Pennsylvania
- Exchange Place Transit Tunnel Upgrades, NY-NJ

LITTLE TUNNEL, CUMBERLAND GAP, TN

100-year old disused
Railroad Tunnel converted
to a Utility and Pedestrian
Tunnel

Tunnel Condition Survey

Little Tunnel - Profile

Little Tunnel – Initial Collapse of Wooden Sets

Dead Load on Wooden Sets

Little Tunnel

Initial Collapse

CROSS SECTION

PROFILE THROUGH COLLAPSED ZONE

CROSS SECTION

PROFILE THROUGH STABILIZED ZONE

Initial Repairs at End of Brick Lining Scaling and Rock Bolting

Initial Repairs – Scaling and Rock Bolting

Concrete Reinforcing of Wooden Sets in Problem Areas

CLEARANCE IMPROVEMENT AND STABILIZATION OF WHITEHAVEN AND ROCKPORT TUNNEL

CONRAIL - POCONO MOUNTAINS, PENNSYLVANIA

All work had to be done in 6 to 8 hour windows and track had to remain live at end of each shift

IINITIAL ICE CONDITIONS AT NORTH PORTAL OF ROCKPORT TUNNEL

Plan and Profile of Rockport Tunnel Condition Survey

Rockport Tunnel Required Clearance Improvement

Greatest Danger at North Portal!

Tom Badger - Miner

ROCKPORT TUNNEL

Pre-Support Then
Removal of
Structurally Unsound
Lining

Stabilizing Existing Lining Where Possible

Rock Bolting from Work Platform

Stabilizing with Fiber Reinforced Shotcrete

Whitehaven Tunnel Notching Crown to Increase Clearance

CONRAIL

WHITEHAVEN TUNNEL

Re-blasting of cuts due to insufficient extent of roadheader notch

CONRAIL -

WHITE HAVEN TUNNEL, SOUTH PORTAL

(No original portal structure)

Initial support with rockbolts;

Final support with fiberreinforced shotcrete

WHITEHAVEN TUNNEL

Clearance Improvement at North Portal

Historic Portal Structure

WHITE HAVEN TUNNEL

Support and Reinforcing of North Portal Walls

•Reinforced shotcrete lining

•Core through lining prior to anchor installation

Whitehaven Tunnel Stabilizing Portal

Drilling Rock Anchors in Masonry Wall

CONRAIL -

WHITE HAVEN TUNNEL NORTH PORTAL

Excavation of Tunnel Cover

Support with bolts and shotcrete

CONRAIL

WHITE HAVEN TUNNEL

SUPPORT OF NORTH PORTAL STRUCTURE

- •Drainage Installation
- •PVC Liner

CONRAIL -

WHITE HAVEN TUNNEL

Saw notching of reinforced portal area

Tunnel Drainage

Construction of Insulated Drains

Conrail -

White Haven Tunnel

Insulation in an Irregularly - Shaped Section of the Tunnel

- •Rail Mounted Work Deck
- •Insulation in a Regularly Shaped Section of the Tunnel
- •Spark Deflector Installation

CONRAIL WHITE HAVEN AND ROCKPORT TUNNELS

INSULATION SPARK DEFLECTOR INSTALLATION

WHITEHAVEN TUNNEL

CONSTRUCTION CONDITIONS

The Port Authority of NY and NJ

Downtown Restoration Program - Phase I Exchange Place Improvements Project City of Jersey City, NJ, USA

Recalling September 11, 2001

Recalling September 11, 2001

Recalling September 11, 2001

Before

After

Downtown Restoration Program

Immediate Issues:

- WTC Station Destroyed
- Tunnels E & F Plugged to Prevent Flooding
- > Exchange Place Station Closed

Phase I:

- New, Temp WTC Station
- ➤ Rehabilitate
 Tunnels E & F
- Covert EPS to be Terminal Station

> Schedule:

> Re-Open EPS by June 2003

Golder

> Re-Open WTC by Dec 2003

Exchange Place Improvements Project

Scope of EPS Project

- Demolish Tracks, Cables, Conduits, and Equipment
- Construct New Crossover Tunnels
- Extend Station Platforms
- Install New Duct Banks, Cables, and Equipment
- Install New Tracks, Turn outs, Signal Controls
- Restore Station

3D Rendering of Tunnels and New Cross Passages

14'

1907 Tunnels

Condition Survey

Typical Section

Profile through Tunnels

Typical Cross Section

Jersey City Streets Above Project

Christopher Columbus Boulevard

Project Challenges

> Schedule, Schedule & Schedule

- Complete Station Renovations within 15 months
- Complete Tunnel Excavation Activities within 7 to 8 months
- ➤ Undertake and Complete Investigations and Designs Parallel with Construction
- Commence Construction Before Investigations and Designs Completed
- Balance Project Schedule Demands & Design Conservatism

Design and Construction Challenges

- Excavate Large Underground Rock Caverns Up to 60 feet wide in the Manhattan Schist
- Shallow Rock Cover, as thin as 25 feet
- Localized Zones of Poor Rock Quality
- Lower than Expected Rock Mass Strength
- Overlying Multi-story Building Structures
- Limited/Restricted Access for Construction
- Narrow Tunnel Clearances

Tunnel Analyses

- Analyses:
 - > UNWEDGE
 - Phases²
 - > UDEC

UNWEDGE

Conclusions from Analysis

- Stresses changes are negligible
- Maximum crown displacements estimated at ³/₄ inch
- 15 foot long rock bolts alone provide factor of safety >1.0 for worst-case wedges and >1.5 for observed wedges
- 11 inch min. thickness of fiber-reinforced shotcrete and lattice girders increase longterm factor of safety to >3

Tunnel Design

Initial Design Decisions:

- Steel Fiber Reinforced
 Shotcrete & Resin-Grouted
 Rockbolts for Permanent
 Support
- Drill-and-Blast, with Line or Channel Drilling in Critical Locations
- Flat Arched Roof
- Pre-Support Reinforcement
- Staged Excavation & Support Installation
- Concrete Backfill in Plugs

Later Design & Construction Decisions:

- Bolt Length & Spacing
- Shotcrete Thickness
- Road-Header Excavation

Generalized Tunnel Excavation & Ground Support Installation Sequences

Pre-Support Reinforcement

Concrete Liner Removal

Tunnel Plugs

Road-Header Excavation

Road-Header Excavation (Cont'd)

Rock Bolt Installation

Lattice Girder Support

Shotcrete Application

Note: The Use of Shotcrete as a Final Lining saved 6+ months on the Project Schedule

Final Shotcrete Lining

Nearing Completion

Completed Crossovers

Completed Crossovers

Completed Crossovers

Thanks for your attention

